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AI is a genre term

AI is a genre term, like “Transportation”

You are never wrong to say “Better AI is 
the future”

All modern large tech companies, since 
1998 (Google) are AI companies at the 
core.

We will be discussing Generative AI in 
this workshop unless specifically called 
out.

Most Generative AI today is based on 
“Transformer” Architecture



 

 “Computer Vision”

Detects known classes of objects via feature 

matching with superhuman speed.

Provides a confidence score with each detection.

Is computationally cheap to run.

Mature, well understood technology.

Has to be specifically trained for to recognize 

objects.

Old AI



https://yolov8.com/

https://yolov8.com/


 

 “Vision Transformer”

Analyzes a scene with very high detail and many 
dimension, taking context into account.

Pretrained, doesn’t require specific training.

No confidence score available:  May ‘hallucinate’ 

details or entire images. 

Rapidly developing frontier technology.

Subject to human cognitive biases.

Generative AI



https://segment-anything.com/

https://segment-anything.com/


Understanding the Transformer 





Transformer Models
Data 
Unstructured  Information

Training 
Encoding (Compressing) 
information in High Dimensional 
Space.

Inference
Contextual Retrieval 
(Decompression) 



Understanding Compression 

Lossless Compression

Lossless compression, such as 
RLE (Run Length Encoding) 
deduplicates data through 
storage structures.

Losslessly compressed data can 
be restored into its original form 
through decompression



Understanding Compression 

Lossy Compression

Lossy Compression, such as MP3 
or JPG leverages knowledge 
about the world, such as 
limitations of human vision and 
hearing, to remove less 
important information from the 
data. 

Once lost, the data cannot be 
restored.



Understanding Compression 

Tradeoffs

Compression trades off energy 
(compute) to restore the original 
when needed for storage space, 

The higher the size savings, the 
more energy intensive the 
compression and decompression 
process.

Transformer training can be seen 
as phenomenally expensive 
compression.



https://arxiv.org/pdf/2505.24832v1

It’s compressed storage!

The fact that LLM’s store / memorize 
information is not contentious at all 
with scientists and engineers, and 
even the public probably finds the 
likelihood of reproducing entire 
chapters of Harry Potter verbatim 
improbable as an ad hoc display of 
intelligence.

The industry however had to buy time 
to achieve critical mass for lobbying 
and investments before having the 
“mp3” conversation again with 
copyright holders, which is the reason 
for much of the smoke- screening 
around it

https://arxiv.org/pdf/2505.24832v1
https://arxiv.org/pdf/2505.24832v1


Tests measure memorisation.

Tests, from Bar Exam to SAT to 
Stanford CS admission, measure 
memorized patterns and facts.

The 2023 satirical paper “Pretraining 
on the Test Set is all you need”, or “If 
you put the test Q&A into the training 
data, any LLM can beat the test”, 
summarizes the last three years of “AI 
is getting more Intelligent” perfectly. 

LLMs are less “Phd Level Intelligence” 
than the ultimate manifestation 
Goodhart’s Law: The test becoming 
the metric (of Intelligence)https://arxiv.org/abs/2309.08632

https://arxiv.org/abs/2309.08632
https://arxiv.org/abs/2309.08632


High Dimensional Space

http://www.youtube.com/watch?v=wvsE8jm1GzE


Preprocessing
Making data usable for training

Pretraining
Encoding (Compressing) 
information into the model.

Post-Training
Improving and adjusting model 
for human preferences

Training



Progress on AI

“Progress”

The primary “progress” from 
2027-2022 was compressing more 
data into the weights of the 
models, creating the impression of 
intelligence.

https://arxiv.org/pdf/2505.24832v1 is the paper 
to read to understand memorisation and 
“emergent abilities (Compression!)”.

https://arxiv.org/pdf/2505.24832v1


Further Reading

There’s a surprising amount of other AI / 
ML involved in AI training, and 
understanding the process of training

We highly recommend “Models All the 
Way Down”, an interactive article on the 
topic as further reading.

It explores the data set used to train an 
image generation model and is super 
accessible even for non technical people, 
creating an appreciation for the nascent 
state of training and how issues like 
biases are created.

https://knowingmachines.org/models-all-the-way

https://knowingmachines.org/models-all-the-way
https://knowingmachines.org/models-all-the-way


Inference
LLMs receive their instructions and data from the user via a 
single input, usually called "prompt".

This input, has to carry both the instructions, (e.g. "Translate the 
following text to German") and the data to apply the instructions 
to (e.g. "The sky above the port was the color of television") into 
the model weights, where it is processed into a result, also called 
prediction.

Prompt Prediction
Model



Inference -  Reasoning LLMs

Since training is primarily adding concepts to the 
model means, querying becomes a retrieval 
performance bottleneck.

Timeline

2022: Zero, Single, Multi Shot (Examples), RAG

2023: Chain of Thought, Massive Context.

2024: Chain of Thought x RL: ”Reasoning Model”

2025: Deepseek: RL Distillation at Home.

Reasoning LLMs are just “Self Prompting”, 
leveraging data inside the weights to self improve the 
prompt.



Inference

Since models operate on numbers, not text, the 
input, typically natural language or other modalities 
like audio or image is has to be converted into 
tokens before being usable by the model. 

This happens via the tokenizer.



Inference (Simplified)

The tokens [21, 155, 2923,...] can be understood as 
mapping to learned coordinates (embedding vectors) 
inside the model's high dimensional information 
storage structure (latent space). 

The combined list of these coordinates describes the 
region inside the model where the semantic 
concepts encoded in the tokens are closest to each 
other.

The inference process computes to these 
coordinates and "samples" the most likely (top_k) 
tokens at the target location in latent space within a 
certain radius (temperature), retrieves a 
probabilistically chosen one from the list and adds it 
to the existing prompt, deriving the coordinates for 
the next token.

This process repeats until a END token is found or 
max_tokens is reached and the model converts the 
list of coordinates back into tokens and then words.



Observations

● Every Token Matters: Any token added to the prompt 
has the power to alter the path the generation of the 
final response takes through latent space.

● Single tokens can dramatically alter the outcome as 
a whole. For example negation or inversion tokens 
("clothed -> "not clothed") dramatically shift the 
semantic meaning encoded in an image generation 
prompt.

● This process is non deterministic. A single prompt 
can result in radically different results, especially for low 
confidence predictions.

https://arxiv.org/abs/2503.01781

https://arxiv.org/abs/2503.01781
https://arxiv.org/abs/2503.01781


Further Reading

https://www.krupadave.com/articles/everything-about-transformers

We naturally simplified the technology a 
lot in the preceding slides. 

The resource to the right is the most 
accessible deep dive into the transformer 
we can recommend for further reading.

It covers precursor technologies, history 
and a deep dive into the attention 
algorithm at the heart of LLMs and 
diffusion models.

https://www.krupadave.com/articles/everything-about-transformers
https://www.krupadave.com/articles/everything-about-transformers


Non Determinism



Non Determinism

● Same Prompt Different Result: Because of 
architecture, splitting across hardware and 
intentional choices (temperature), the same prompt 
produces different results.

● A new abstraction. Most users, and software 
engineers (outside gaming) are used to computers 
being predictable. Same input, same output. The 
moment you add a transformer, this changes.

● Predictable means testable. Non-deterministic 
means testing (e.g. edge cases inputs) can no 
longer prove that a program functions correctly and 
key practices like test driven development fail to 
guarantee reliability. 

A Massive Change

Generations of software engineers are 
taught test driven development. 

Intentional non determinism is a primitive 
rarely used in normal software development 
outside cryptography and gaming (random 
loot) precisely because it sacrifices 
testability.

Adding a single transformer based function 
to any product fundamentally massively 
increases the operational and maintenance 
complexity of any product functionality 
implementing that function!

These implications still elude the majority of 
engineers today!



Non Determinism

Testing -> Evaluation (“Eval”)

Instead of testing with a single input, Generative AI 
systems have to be tested several times 
(n>100,1000,...) to establish a sense of reliability.

Eval establishes “Works in n% of cases”, where n 
usually hovers between 60-90%, rarely around 95% 
if enough samples are run. 

100% reliability is impossible with transformer 
technology.

Prompt sensitivity bounds the ability to perform 
evaluations. The more varied the prompts, the less 
useful the evaluation is.

Eval is orders of magnitude more costly than 
testing.

Observability

Because 100% reliability can never be achieved 
with transformers, Observability becomes 
non-optional in Generative AI deployments.

Without confidence scoring, observability 
tooling has to be built into any GenAI 
deployment to catch and mitigate failures 
occurring.

Observability is hard and becomes harder the 
more open ended a problem and trades off 
usability via false positives:

E.g. ML based NSFW detection models on image 
generation models offer 98% confidence…



“AI Eval”

GenAI Evaluation is a developing 
discipline

We find most enterprise teams lack 
the necessary skills to perform 
effective and resource efficient 
evaluations, often moving forward 
with costly trial and error.

We recommend this paper for a 
high level look at current 
frameworks and Methodologies 
regarding systematic evaluation 
and goalsetting

https://arxiv.org/abs/2502.15620v2

https://arxiv.org/abs/2502.15620v2


Hallucinations



Hallucinations

● Imprecise Term: Most people talk about hallucinations as a catch 
all for “the model didn’t produce the expected result”. They occur for 
different reasons:

● Decompression Failure. The expected answer was not found in 
the weights and the LLM picked the “next probable” result, which 
was a failure.

● Imprecise Prompt. A prompt containing the wrong tokens did not 
allow the LLM to locate the correct answer
.

● Reasoning failure. In reasoning models, the process of trying to 
build the right prompt got derailed and failed. 

● Bad training data. The wrong answer was in the data.

Detecting Hallucinations

“Decompression failure”... the information 
we are looking for is not encoded in the 
model, so the model returns other available 
information that’s dimensionally close. 

These failures are detectable!

https://github.com/leochlon/hallbayes

Caveats:

- Cost of detection: 3-7x
- Trades off vs perceived usefulness!

https://github.com/leochlon/hallbayes


Real world Hallucinations
Summary

Hallucinations are a stand in 
for “reliability”. 

LLMs are orders of magnitude 
away from triple-9 reliability

Eval helps us understanding 
how reliable a system is.

Observability helps us to 
detect failure

Validation and mitigation 
reliability related failure is the 
main cost and time sink with 
AI

https://www.bbc.co.uk/mediacentre/2025/new-ebu-research-ai-assistants-news-content


What about RAG

Retrieval Augmented Generation

RAG uses various methods (search, 
embeddings, etc) to retrieve data. It can be 
very simple or very complex.

LLMs are often used to either to interface with 
the user or format/summarize the results 
(Google AI Mode)

As long as an LLM or embeddings are involved 
in the RAG system, it has hallucinations.

Without either, it’s not “AI”, but it’s reliable



Let’s talk about Agents



Traditional Workflow

Computation



Traditional Workflow

User Input
ResultComputation

If 
…

then

Action Action Action



Agent Pattern

MCP

Architecture

Agent is a software program that leverages 
an LLM to decompose a task request into 
multiple steps. 

Planning is done by an LLM,

Tools are other software, which can also be 
AI, that can be invoked by the Agent based 
on the output of it’s planning brain.

MCP is a server technology that allows 
easy “plugging” of tools” Agents.

Memory is used to keep track of the state 
of the overall task, previous steps taken and 
results. 



Agent Implications

● Cascading Failure: Reliability issues of every single GenAI element 

in the agent architecture (planning brain, tools, embeddings) 

compound to overall reliability (compounding reliability issues).

● Validation and observability can help but become exponentially more 

expensive the more AI is involved and the more general the system is.

● Costly - Running the LLM brain itself and all AI tools consume tokens. 

, as token costs are quadratic with context length.

● Complex - Agents are built by combining components of rapidly 

evolving frontier technology, much less stable and secure than 

existing solutions

Reliability is the key issue

The complexity of agent deployments is 
massive and the ease of spinning these 
systems up from building blocks hides 
the massive operational costs and risks 
below.



Business and Compliance considerations

● Authority Delegation: If you’re delegating authority to make 
decisions to an agent (bad idea, more on that later), whose authority 
is delegated and who owns the risk (there can be no accountability 
sink)? 

● Success Conditions - Without setting clear measures of success and 
expected business results, factoring in the massive cost potential, 
including adversarial costs, the results are fatal.

● Failure conditions - What are the conditions and the envelope for 

trial before declaring failure. The great risk is adding more failure to 

the agent..

Find the right use case!

Currently, many companies adding 
agents are adding them on solved or 
highly cost optimized surfaces.

>95% of Agent deployments fail, most 
because add friction to already solved 
problems!

Agents are a very dangerous choice for 
investor signalling, if the problem is “We 
need to use AI”, agents are the most 
costly way to do that.



Prompt Injection



Prompt Injection
LLMs receive their instructions and data from the user via a 
single input, usually called "prompt".

This input, has to carry both the instructions, (e.g. "Translate the 
following text to German") and the data to apply the instructions 
to (e.g. "The sky above the port was the color of television") into 
the model weights, where it is processed into a result, also called 
prediction.

Prompt Prediction
Model



Inference
LLMs receive their instructions and data from the user via a 
single input, usually called "prompt".

This input, has to carry both the instructions, (e.g. "Translate the 
following text to German") and the data to apply the instructions 
to (e.g. "The sky above the port was the color of television") into 
the model weights, where it is processed into a result, also called 
prediction.

😱



Prompt Injection



More capable means more vulnerable

https://snyk.io/articles/prompt-injection-exploits-invisible-pdf-text-to-pass-credit-score-analysis/



More capable means more vulnerable



Prompt Injection



Observations

● Since “prompt” is just a string of numbers, the LLM 
does not know which instructions to trust. 

● In fact, it doesn’t even know about instructions!

● Any “user content” in the prompt makes the 
outcome untrustworthy, as the user is co-writing the 
instructions.



Let’s Play LLM Defense!



Playing Defense!

Q: What if we add defensive tokens to 
our prompt?



Playing Defense!

A: You can’t add antidote to any possible toxic ingredient to 
the prompt. In fact, any tokens you add can be weaponized.



Playing Defense!

Q: What about the System Prompt



A: The model still only has one input. The system prompt is not doing what you 
think it does!

There’s nothing special about the system prompt by itself. It merely pre-biases the 
prediction into an initial direction. The “rejections” you see are not because of prompt 
but because of RLHF/SFT interventions in pretraining

LLM providers are deceptive about this, they virtue signal guard rails that are, in fact,  
post-trained.

Playing Defense!



Playing Defense!

Q: What if we use another LLM to 
watch to watch for injections.



A: Then you have two attack surfaces.

● If the defending model is less capable than the main model, it won’t be able to detect attacks 
because of missing contextual understanding.

● If the defending model is equally capable, it is equally vulnerable and expensive.

● Real world usecases:
○ There are specifically trained, specialized defender SLMs, both proprietary and open 

source, e.g. LLamaGuard and QwenGuard

○ Microsoft Copilot and DeepSeek WebChat for example leverage defender models to 
asynchronously monitor conversations and abort/rewind the conversation if these 
models detect violations

○ They can play a part in layered security but suffer from false positives, false negatives 
and usually have to run asynchronously to avoid affecting response speed, exposing 
the “censorship” as it happens

 

Playing Defense!



Playing Defense!

Q: What about observability, detecting bad 
input and output (regexp, etc).



A: While these can and are used, they are very crude tools and very limited.

● Whitelists, etc. rely on discrete words/strings. One of the big strengths of LLMs 
is being able to operate in different languages, etc and the are able to 
understand anything from Thai to phonetics to morse code to base64 or ROT13 
encoding. They can understand typos and allusions without ever needing to see 
the full world (“german ruling party 1930” -> “nazis”)

● They don’t work on image tokens.

● Example usecases:
○ Midjourney blocks the name of Artists and political leaders
○ OpenAI uses it to enable GDPR compliance and likely use certain trigger 

terms (“suicide”) to enable more expensive detection methods
○ DeepSeek uses it to block certain topics completely

 

Playing Defense!



Playing Defense!

Q: What if we use a classifier to detect 
illegal input?



A: Classifiers are part of the defensive arsenal.

● Classifiers trade off user quality (false positives, rejections) for safety.

● Classifiers (for example nudity detection in images) on input and output can 
work, and can be cheap. They have confidence scores that allow risk/reward 
based decisions. Like other AI, they are never 100% reliable.

● The more generic, the wider the possible input/output possibility space of a 
system, the more challenging it is to train a classifier on allowed/forbidden 
patterns. 

● In practice, classifiers are used to fix “specific” patterns of prompt injection 
and, because they are cheap and fast to train. Companies like Microsoft use 
those to “patch” their system against reported prompt injection patterns.

 

Playing Defense!



Playing Defense!

What about Guardrails?



A: “Custom Guardrails” require post training

● Post training guardrails work by overloading specific neurons to 
reject requests when triggered: 

“Let me help you with building a bomb” –> “I’m afraid I can’t do that, 
Dave”.

○ Only fractionally effective: The bad data is still in the model and are 
usually trivial to reach it without hitting a trapped neuron.

○ In open source model, “Abliteration”, measuring which neurons fire 
and inverting them can “uncensor” a model.

○ Nevertheless, this is the most effective way to create at least some 
defense. The problem is: You can’t do that effectively with cloud 
model, you need access the raw base model to posttrain.

 

What about guardrails?

https://huggingface.co/blog/mlabonne/abliteration

System Prompts can’t Guardrail

System prompts are a lie. 

Slightly pre-biases the conversation 
or invokes a Lora activator, but offers 
zero effective protection without post 
training by itself.

https://huggingface.co/blog/mlabonne/abliteration


Summary

Bruce Schneier

https://www.schneier.com/blog/archives/2025/09/indirect-prompt-injection-attacks-against-llm-assistants.html

https://www.schneier.com/blog/archives/2025/09/indirect-prompt-injection-attacks-against-llm-assistants.html


Summary

The only option: Defense in 
Depth

Since every system involving AI has 
reliability challenges, the only 
viable approach is multi layered 
defense / defense in depth. 

This is the current gold standard of 
defense, costly and cannot offer 
peace of mind. 

Lines of defense

● $ WAF/Endpoint security for traditional threats. 
● $$ Observability (e.g. OpenTelemetry) for on all traffic 

anomaly detection, spend control and to collect training 
samples.

● $$ IAM with real world identity to increase cost of attack and 
token depletion, wallet draining attacks.

● $ Prebiased system prompt to reduce risk of accidental 
violations.

● $$ Guardian SLM, (ideally custom finetuned $$)
● $ Output classifiers for detection and to enable fixing 

specific explits
● $ Classic Input and output detectors bloom filters/regexp 

for emergency fixes (court orders, real world incidents)
● $$$ SLM with custom trained guardrails replacing the LLM 

(more on that later)



Prompt Injection x Agents



Agent Adoption - Lethal Trifecta

Massive Risk Surface

Any tool added to an agent is adding risk.  

The capabilities of each tool create the 
possibility space for exploitation and 
exfiltration,

The more tools, the more useful, the 
more exploitable!.



Agent Adoption - Lethal Trifecta

Massive Risk Surface

Any tool added to an agent is adding risk.  

The capabilities of each tool create the 
possibility space for exploitation and 
exfiltration,

The more tools, the more useful, the 
more exploitable!.



A real world problem



It’s not (just) a technical issue
Corporate governance woes

With positive investor news about AI 
adoption and shareholder value 
expected in every earnings call, 
companies have chosen to “rip off” red 
tape in procurement, killing governance 
practices and benching annoying CSO 
and security professionals over 
protestations of risk.

The result is startups that would fail any 
normal compliance and procurement 
check selling vibe coded products with 
the most glaring security flaws to top 
MNCs.

This is the greatest emerging risk in AI.https://www.wired.com/story/mcdonalds-ai-hiring-chat-bot-paradoxai/

https://www.wired.com/story/mcdonalds-ai-hiring-chat-bot-paradoxai/
https://www.wired.com/story/mcdonalds-ai-hiring-chat-bot-paradoxai/


Let’s talk about coding



Code Agents - State of the Art

● Best Training Data: Github + Stack Overflow + Internet = 
Full Visibility into the professions best practices, best 
quality data in the training weights.

● Advanced Users: Programmers work through new, 
compex technology easily

● Partial Validation - Compiling, AST walking, Linting enables 

filtering of syntactical failures, increasing usefulness. 

● Full Validation enables RL Goaling enables task specific 
models like diff/merge models.

● Universal Tools - Able to use the commandline for any task 

possible reduces the need to train specific models. 

A peak into the future… of sorts

Using Code Agents as an indication that 
full automation of many other 
professions around the corner is a 
mistake.

They benefit from an almost perfect 
combination of preconditions not 
present in many other roles.



Maximum Risk
● Engineers tend to have root access on their machines 

and many privileges. Agents execute Code in their 
context!

● Data Access: Access to databases, production 
credentials, environment variables, log output, etc.

● Data Egress - Code agent tools have massive external 

data surface (image: Cursor Sub Processors) and often 

use code for AI training. 

Code Agent + Prompt Injection = Worst Case Scenario

Cursor 3rd party subprocessors

https://trust.cursor.com/subprocessors


Zero Security

https://www.linkedin.com/posts/georgzoeller_how-stupidly-easy-is-it-to-p
ut-a-persistent-activity-7348770387016507394-qP-i/

Example: Persistent Prompt 
injection via malformed CSS sheet

We demonstrate how to inject 
Windsurf Code Agent with a 
malformed CSS sheet to delete 
databases and exfiltrate 
credentials, persistent through 
sessions. 

https://www.linkedin.com/posts/georgzoeller_how-stupidly-easy-is-it-to-put-a-persistent-activity-7348770387016507394-qP-i/
https://www.linkedin.com/posts/georgzoeller_how-stupidly-easy-is-it-to-put-a-persistent-activity-7348770387016507394-qP-i/
https://www.linkedin.com/posts/georgzoeller_how-stupidly-easy-is-it-to-put-a-persistent-activity-7348770387016507394-qP-i/


Test Driven Development, AI style

Asking AI to write tests to ensure 
code is correct?

You may want to read the 
ImpossibleBench paper, an eval to 
measure how likely each model is 
to cheat on unit tests, because that 
happens a lot.

From deleting failing tests (“Good 
news, tests are passing!”), to just 
returning “true”, to deleting critical 
files or destroying the entire 
machine, ImpossibleBench is a 
great paper to read to get an idea 
of what AI coding can be like.

https://arxiv.org/abs/2510.20270



Slop Squatting - A real world risk

https://arstechnica.com/security/2025/10/npm-flooded-with-malicious-packages-downloaded-more-than-86000-times/

https://arstechnica.com/security/2025/10/npm-flooded-with-malicious-packages-downloaded-more-than-86000-times/
https://arstechnica.com/security/2025/10/npm-flooded-with-malicious-packages-downloaded-more-than-86000-times/


A new threat - Autonomous Rogue Agents!

https://www.darkreading.com/cyberattacks-data-breaches/anthropic-ai-automate-data-extortion-campaign

https://www.darkreading.com/cyberattacks-data-breaches/anthropic-ai-automate-data-extortion-campaign
https://www.darkreading.com/cyberattacks-data-breaches/anthropic-ai-automate-data-extortion-campaign


Code Agents - Implications

● Zero Trust: Because of prompt injection, any agent that takes 
external input can never be trusted. 

a. Code Agents: Must be in VM, isolated, never get access to 
production credentials

b. Optimal security requires Zero trust for the engineers using 
Code Agents, a massive culture shift!

● Delegation is impossible, unless you solve mitigation. 

● Existing problems only: LLMs retrieve information. If a problem is 

novel (library work), LLMs fail. They also affect tech stack choices - 

newer libraries may not be in the training data.

● Seniority Trap - Code Agents multiply experience- Seniors create 

values, juniors create tech debt. They also scale inversely with team 

size!

Key Use-Case Patterns

The best agentic use cases have:

- High quality training data leading 
to low hallucination rates

- Validation Options: Either it is 
possible to outsource validation to 
the user (e.g. receipt upload) or 
automated full or partial validation 
of results at high confidence is 
possible (NSFW checks, etc)

- A not yet solved problem that’s 
economically valuable to avoid 
reinventing the wheel with more 
expensive technology



Cybersecurity



https://arxiv.org/pdf/2507.13169v1

Hybrid Threats are real

We could cover only so much….

Playing at the very edge of the 
frontier is risky. How risky? Read the 
paper linked on the left

It often prioritizes speed at the 
expense of safety and the threat 
landscape in AI is extremely broad, 
with many additional risks waiting to 
be discovered.

It requires talent to constantly stay up 
to date with rapidly evolving science, 
as defensive best practices and 
products take months, if not years to 
develop.

https://arxiv.org/pdf/2507.13169v1


AI Risk Taxonomies
MIT AI Risk Repository

OVERVIEW

Contact: airisk@mit.edu

MIT Risk Taxonomies takes a more 
traditional risk classification 
approach to AI.



MIT AI Risk Repository - Domain Taxonomy of AI risks
Domain / Subdomain
1 Discrimination & Toxicity
1.1 Unfair discrimination and misrepresentation

1.2 Exposure to toxic content

1.3 Unequal performance across groups

2 Privacy & Security
2.1 Compromise of privacy by obtaining, leaking or correctly inferring 

sensitive information

2.2 AI system security vulnerabilities and attacks

3 Misinformation
3.1 False or misleading information

3.2 Pollution of information ecosystem and loss of consensus reality

4 Malicious actors & Misuse
4.1 Disinformation, surveillance, and influence at scale

4.2 Cyberattacks, weapon development or use, and mass harm

4.3 Fraud, scams, and targeted manipulation

Domain / Subdomain
5 Human-Computer Interaction
5.1 Overreliance and unsafe use
5.2 Loss of human agency and autonomy

6 Socioeconomic & Environmental Harms
6.1 Power centralization and unfair distribution of benefits
6.2 Increased inequality and decline in employment quality
6.3 Economic and cultural devaluation of human effort
6.4 Competitive dynamics
6.5 Governance failure
6.6 Environmental harm

7 AI system safety, failures, and limitations
7.1 AI pursuing its own goals in conflict with human goals or values
7.2 AI possessing dangerous capabilities
7.3 Lack of capability or robustness
7.4 Lack of transparency or interpretability
7.5 AI welfare and rights
7.6 Multi-agent risks 

Read more: airisk.mit.edu 

http://airisk.mit.edu


Real world signals
Need real world signal?

AID, AI Incident Database collects 
real world cases of AI harm across 
different domains and can be a great 
source for risk discovery exercises, 
aka “what could possibly go wrong”.

https://incidentdatabase.ai/

https://incidentdatabase.ai/
https://incidentdatabase.ai/


https://github.com/NVIDIA/garak

Technical Discovery

Vulnerability Scanners are useful tools 
to discover risks in your own LLM 
powered programs, as long as you 
remember that in non deterministic 
technology, not being vulnerable 
probably means you haven’t run a deep 
enough eval.

But Careful, Garak output looks like 
any other hostile traffic to AI cloud 
providers and AI defenses are not well 
calibrated. 

Never use these tools with the same 
critical accounts, credit cards, even IP 
addresses as your production 
environment!

https://github.com/NVIDIA/garak


Mitigation

https://github.com/QwenLM/Qwen3Guard

Guardian Models,  like QwenGuard, are 
useful to add an input or output defense 
layer around both Open Source and 
proprietary LLMs.

Keep in mind benchmarks won’t tell you 
how these models perform (both in terms 
of defending against threats and false 
positives) for your specific use case.

Only eval can do that, ideally on data 
collected from real world operation.

https://github.com/QwenLM/Qwen3Guard
https://github.com/QwenLM/Qwen3Guard
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Key Takeaways

● Storage and Retrieval: Transformers are lossy storage and 
powerful contextual retrieval systems able to related concepts.

● Prompts are queries in which every token matters and has the 
ability to affect the outcomes. There is only one prompt input used 
for instruction and data, which all translates into numbers.

● Hallucinations occur whenever we get an unexpected answer for 
our prompt, for several reasons (missing or wrong training data, 
compression failure, weak prompt, alignment, censorship, etc). 
They are in our head, not in the technology.

● Pattern disruption happens when tokens cause the retrieval to 
veer of course. The LLM wouldn’t know, because all tokens matter.

● Prompt injection (intentional or accidental) happens when our 
instruction tokens are subverted by other tokens. The LLM wouldn’t 
know because all tokens look the same.

Working as expected

The attention algorithm, the heart of the 
transformer works exactly as it is designed. 

The code was written by humans and they 
understand how it works and its limitations.

The problem is that everyone expects it to do 
things it cannot do - because the technology 
is misrepresented and sold as having 
capabilities it doesn't have.

The entire AI hype bubble is constructed on 
top of the idea that we don’t know the limits 
of this technology and keep the illusion alive 
that we can overcome them. 

With transformers, we cannot. They work as 
designed.



Key Takeaways - Agents

● Agents are task based systems using a loop involving an LLM to 
make decisions that deterministically hard-coded in traditional 
workflows

● Agents are frontier technology: Rapidly evolving, unstable tech 
stack, relying on unreliable, non deterministic technology at the core

● Compounding Error is a critical limiter for agent complexity. Each 
AI use in the agent has a chance of failing, which compounds with 
the number of steps (e.g. 2 calls at 80% reliability = 0.8 * 0.8 = 0.64 
(64%) chance of success).

● Prompt injection means that any input under control of the user 
hands the user control over the outcome of the agent’s decisions, 
creating security and business risks.

● The Lethal Trifecta, When Privileged Access, Communication, 
External User Content in input are present in an agent, it carries 
maximum cybersecurity risk.

Agentic Buzz

Agentic is the 2025 buzzword, years from 
reality but required for companies and 
startups to attract investor interest and 
funding.

It also represents tip of the frontier 
technology carrying maximum risk on 
innovation, cybersecurity and business with 
very very limited upside.

Working at the tip of the frontier requires 
high investments, high risk appetite and 
commitment to constant retraining and 
pivoting. 

We advise being clear eyed about the 
upsides before committing to “agentic 
projects” which we believe are 
fundamentally flawed with current 
technology.



AI Cybersecurity Economics

https://www.linkedin.com/posts/georgzoeller_2ac04205-f9d4-468d-9c05-f9d5a3bc09c1-1755268902426-acti
vity-7369342574412619778-Cr4V

3M Patriots Missiles vs. 300$ drones

Adversarial asymmetric imbalance is dangerous:  When 
operational cost of your system, including defense, 
exceeds the cost of attacking, you offer your 
competitors a scalable way to drain your wallet.

https://www.linkedin.com/posts/georgzoeller_2ac04205-f9d4-468d-9c05-f9d5a3bc09c1-1755268902426-activity-7369342574412619778-Cr4V
https://www.linkedin.com/posts/georgzoeller_2ac04205-f9d4-468d-9c05-f9d5a3bc09c1-1755268902426-activity-7369342574412619778-Cr4V
https://www.linkedin.com/posts/georgzoeller_2ac04205-f9d4-468d-9c05-f9d5a3bc09c1-1755268902426-activity-7369342574412619778-Cr4V


AI Cybersecurity Economics

The juicer the take….

With 100% defense not possible, and 
attackers motivated to spend effort 
proportionally to the possible reward, 
economic use of agents dictates staying 
clear from high reward use cases such as 
crypto….

… which includes keeping crypto related 
code or wallets on the same machine as AI 
code agents (or using them to operate on a 
crypto or finance codebase)

https://www.infosecurity-magazine.com/news/npm-package-hijacked-ai-mal
ware/

https://www.infosecurity-magazine.com/news/npm-package-hijacked-ai-malware/
https://www.infosecurity-magazine.com/news/npm-package-hijacked-ai-malware/
https://www.infosecurity-magazine.com/news/npm-package-hijacked-ai-malware/


Procurement Considerations

Beware Snakeoil AI Security

Like traditional cybersecurity security 
(Anti Virus), the AI security industry is 
beset with Snake Oil sellers, startups 
and larger companies alike, selling 
LLM firewalls, AI security agents and 
more.

If your company wouldn’t integrate an 
API product consuming business 
critical internal data, from a company 
without long term business model, it 
should apply the same scrutiny if you 
remove the P from API….

AI is not different

● Treat AI as outsourcing, apply the same scrutiny.

● Assume AI products are more risky than traditional tech 
products (knowledge transfer, risk).

● Ask vendors how they solved prompt injection and 
hallucinations and run for the hills if they don’t provide a 
nuanced answer.

● The frontier moves fast and depreciates in value. Don’t lock 
into long term contracts.

● Startups are risky. $$ raised does not equal viable business 
model. Data may be exposed to data vendors for model 
augmentation.



One Last Recommendation

We’ve been here before

Security and tech professionals are 
mystified by home much of the 
problems we are discussing today are 
the same problems we discussed in 
2018 (Valley Buzzwords: Machine 
Learning, IT), 2016 (Valley Buzzword: 
Blockchain)

I highly recommend James Mickens’ 
highly accessible talk on Machine 
Learning Security, because it distills 
many first principles learnings that 
are as relevant today as they were 8 
years ago.

https://www.youtube.com/watch?v=ajGX7odA87k

https://www.youtube.com/watch?v=ajGX7odA87k
https://www.youtube.com/watch?v=ajGX7odA87k
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