
Confidential Licensed for internal use only for WPP by Centre for AI Leadership (c4ail.org) Version 1.0

Artificial
 Intelligence

Generative AI Foundations
 and

Security

Confidential Licensed for internal use only for WPP by Centre for AI Leadership (c4ail.org) Version 1.0

Georg Zoeller

Co-Founder
Centre for AI Leadership

Europe, 1450 ADTechnical Foundations

AI is a genre term

AI is a genre term, like “Transportation”

You are never wrong to say “Better AI is
the future”

All modern large tech companies, since
1998 (Google) are AI companies at the
core.

We will be discussing Generative AI in
this workshop unless specifically called
out.

Most Generative AI today is based on
“Transformer” Architecture

 “Computer Vision”

Detects known classes of objects via feature

matching with superhuman speed.

Provides a confidence score with each detection.

Is computationally cheap to run.

Mature, well understood technology.

Has to be specifically trained for to recognize

objects.

Old AI

https://yolov8.com/

https://yolov8.com/

 “Vision Transformer”

Analyzes a scene with very high detail and many
dimension, taking context into account.

Pretrained, doesn’t require specific training.

No confidence score available: May ‘hallucinate’

details or entire images.

Rapidly developing frontier technology.

Subject to human cognitive biases.

Generative AI

https://segment-anything.com/

https://segment-anything.com/

Understanding the Transformer

Transformer Models
Data
Unstructured Information

Training
Encoding (Compressing)
information in High Dimensional
Space.

Inference
Contextual Retrieval
(Decompression)

Understanding Compression

Lossless Compression

Lossless compression, such as
RLE (Run Length Encoding)
deduplicates data through
storage structures.

Losslessly compressed data can
be restored into its original form
through decompression

Understanding Compression

Lossy Compression

Lossy Compression, such as MP3
or JPG leverages knowledge
about the world, such as
limitations of human vision and
hearing, to remove less
important information from the
data.

Once lost, the data cannot be
restored.

Understanding Compression

Tradeoffs

Compression trades off energy
(compute) to restore the original
when needed for storage space,

The higher the size savings, the
more energy intensive the
compression and decompression
process.

Transformer training can be seen
as phenomenally expensive
compression.

https://arxiv.org/pdf/2505.24832v1

It’s compressed storage!

The fact that LLM’s store / memorize
information is not contentious at all
with scientists and engineers, and
even the public probably finds the
likelihood of reproducing entire
chapters of Harry Potter verbatim
improbable as an ad hoc display of
intelligence.

The industry however had to buy time
to achieve critical mass for lobbying
and investments before having the
“mp3” conversation again with
copyright holders, which is the reason
for much of the smoke- screening
around it

https://arxiv.org/pdf/2505.24832v1
https://arxiv.org/pdf/2505.24832v1

Tests measure memorisation.

Tests, from Bar Exam to SAT to
Stanford CS admission, measure
memorized patterns and facts.

The 2023 satirical paper “Pretraining
on the Test Set is all you need”, or “If
you put the test Q&A into the training
data, any LLM can beat the test”,
summarizes the last three years of “AI
is getting more Intelligent” perfectly.

LLMs are less “Phd Level Intelligence”
than the ultimate manifestation
Goodhart’s Law: The test becoming
the metric (of Intelligence)https://arxiv.org/abs/2309.08632

https://arxiv.org/abs/2309.08632
https://arxiv.org/abs/2309.08632

High Dimensional Space

http://www.youtube.com/watch?v=wvsE8jm1GzE

Preprocessing
Making data usable for training

Pretraining
Encoding (Compressing)
information into the model.

Post-Training
Improving and adjusting model
for human preferences

Training

Progress on AI

“Progress”

The primary “progress” from
2027-2022 was compressing more
data into the weights of the
models, creating the impression of
intelligence.

https://arxiv.org/pdf/2505.24832v1 is the paper
to read to understand memorisation and
“emergent abilities (Compression!)”.

https://arxiv.org/pdf/2505.24832v1

Further Reading

There’s a surprising amount of other AI /
ML involved in AI training, and
understanding the process of training

We highly recommend “Models All the
Way Down”, an interactive article on the
topic as further reading.

It explores the data set used to train an
image generation model and is super
accessible even for non technical people,
creating an appreciation for the nascent
state of training and how issues like
biases are created.

https://knowingmachines.org/models-all-the-way

https://knowingmachines.org/models-all-the-way
https://knowingmachines.org/models-all-the-way

Inference
LLMs receive their instructions and data from the user via a
single input, usually called "prompt".

This input, has to carry both the instructions, (e.g. "Translate the
following text to German") and the data to apply the instructions
to (e.g. "The sky above the port was the color of television") into
the model weights, where it is processed into a result, also called
prediction.

Prompt Prediction
Model

Inference - Reasoning LLMs

Since training is primarily adding concepts to the
model means, querying becomes a retrieval
performance bottleneck.

Timeline

2022: Zero, Single, Multi Shot (Examples), RAG

2023: Chain of Thought, Massive Context.

2024: Chain of Thought x RL: ”Reasoning Model”

2025: Deepseek: RL Distillation at Home.

Reasoning LLMs are just “Self Prompting”,
leveraging data inside the weights to self improve the
prompt.

Inference

Since models operate on numbers, not text, the
input, typically natural language or other modalities
like audio or image is has to be converted into
tokens before being usable by the model.

This happens via the tokenizer.

Inference (Simplified)

The tokens [21, 155, 2923,...] can be understood as
mapping to learned coordinates (embedding vectors)
inside the model's high dimensional information
storage structure (latent space).

The combined list of these coordinates describes the
region inside the model where the semantic
concepts encoded in the tokens are closest to each
other.

The inference process computes to these
coordinates and "samples" the most likely (top_k)
tokens at the target location in latent space within a
certain radius (temperature), retrieves a
probabilistically chosen one from the list and adds it
to the existing prompt, deriving the coordinates for
the next token.

This process repeats until a END token is found or
max_tokens is reached and the model converts the
list of coordinates back into tokens and then words.

Observations

● Every Token Matters: Any token added to the prompt
has the power to alter the path the generation of the
final response takes through latent space.

● Single tokens can dramatically alter the outcome as
a whole. For example negation or inversion tokens
("clothed -> "not clothed") dramatically shift the
semantic meaning encoded in an image generation
prompt.

● This process is non deterministic. A single prompt
can result in radically different results, especially for low
confidence predictions.

https://arxiv.org/abs/2503.01781

https://arxiv.org/abs/2503.01781
https://arxiv.org/abs/2503.01781

Further Reading

https://www.krupadave.com/articles/everything-about-transformers

We naturally simplified the technology a
lot in the preceding slides.

The resource to the right is the most
accessible deep dive into the transformer
we can recommend for further reading.

It covers precursor technologies, history
and a deep dive into the attention
algorithm at the heart of LLMs and
diffusion models.

https://www.krupadave.com/articles/everything-about-transformers
https://www.krupadave.com/articles/everything-about-transformers

Non Determinism

Non Determinism

● Same Prompt Different Result: Because of
architecture, splitting across hardware and
intentional choices (temperature), the same prompt
produces different results.

● A new abstraction. Most users, and software
engineers (outside gaming) are used to computers
being predictable. Same input, same output. The
moment you add a transformer, this changes.

● Predictable means testable. Non-deterministic
means testing (e.g. edge cases inputs) can no
longer prove that a program functions correctly and
key practices like test driven development fail to
guarantee reliability.

A Massive Change

Generations of software engineers are
taught test driven development.

Intentional non determinism is a primitive
rarely used in normal software development
outside cryptography and gaming (random
loot) precisely because it sacrifices
testability.

Adding a single transformer based function
to any product fundamentally massively
increases the operational and maintenance
complexity of any product functionality
implementing that function!

These implications still elude the majority of
engineers today!

Non Determinism

Testing -> Evaluation (“Eval”)

Instead of testing with a single input, Generative AI
systems have to be tested several times
(n>100,1000,...) to establish a sense of reliability.

Eval establishes “Works in n% of cases”, where n
usually hovers between 60-90%, rarely around 95%
if enough samples are run.

100% reliability is impossible with transformer
technology.

Prompt sensitivity bounds the ability to perform
evaluations. The more varied the prompts, the less
useful the evaluation is.

Eval is orders of magnitude more costly than
testing.

Observability

Because 100% reliability can never be achieved
with transformers, Observability becomes
non-optional in Generative AI deployments.

Without confidence scoring, observability
tooling has to be built into any GenAI
deployment to catch and mitigate failures
occurring.

Observability is hard and becomes harder the
more open ended a problem and trades off
usability via false positives:

E.g. ML based NSFW detection models on image
generation models offer 98% confidence…

“AI Eval”

GenAI Evaluation is a developing
discipline

We find most enterprise teams lack
the necessary skills to perform
effective and resource efficient
evaluations, often moving forward
with costly trial and error.

We recommend this paper for a
high level look at current
frameworks and Methodologies
regarding systematic evaluation
and goalsetting

https://arxiv.org/abs/2502.15620v2

https://arxiv.org/abs/2502.15620v2

Hallucinations

Hallucinations

● Imprecise Term: Most people talk about hallucinations as a catch
all for “the model didn’t produce the expected result”. They occur for
different reasons:

● Decompression Failure. The expected answer was not found in
the weights and the LLM picked the “next probable” result, which
was a failure.

● Imprecise Prompt. A prompt containing the wrong tokens did not
allow the LLM to locate the correct answer
.

● Reasoning failure. In reasoning models, the process of trying to
build the right prompt got derailed and failed.

● Bad training data. The wrong answer was in the data.

Detecting Hallucinations

“Decompression failure”... the information
we are looking for is not encoded in the
model, so the model returns other available
information that’s dimensionally close.

These failures are detectable!

https://github.com/leochlon/hallbayes

Caveats:

- Cost of detection: 3-7x
- Trades off vs perceived usefulness!

https://github.com/leochlon/hallbayes

Real world Hallucinations
Summary

Hallucinations are a stand in
for “reliability”.

LLMs are orders of magnitude
away from triple-9 reliability

Eval helps us understanding
how reliable a system is.

Observability helps us to
detect failure

Validation and mitigation
reliability related failure is the
main cost and time sink with
AI

https://www.bbc.co.uk/mediacentre/2025/new-ebu-research-ai-assistants-news-content

What about RAG

Retrieval Augmented Generation

RAG uses various methods (search,
embeddings, etc) to retrieve data. It can be
very simple or very complex.

LLMs are often used to either to interface with
the user or format/summarize the results
(Google AI Mode)

As long as an LLM or embeddings are involved
in the RAG system, it has hallucinations.

Without either, it’s not “AI”, but it’s reliable

Let’s talk about Agents

Traditional Workflow

Computation

Traditional Workflow

User Input
ResultComputation

If
…

then

Action Action Action

Agent Pattern

MCP

Architecture

Agent is a software program that leverages
an LLM to decompose a task request into
multiple steps.

Planning is done by an LLM,

Tools are other software, which can also be
AI, that can be invoked by the Agent based
on the output of it’s planning brain.

MCP is a server technology that allows
easy “plugging” of tools” Agents.

Memory is used to keep track of the state
of the overall task, previous steps taken and
results.

Agent Implications

● Cascading Failure: Reliability issues of every single GenAI element

in the agent architecture (planning brain, tools, embeddings)

compound to overall reliability (compounding reliability issues).

● Validation and observability can help but become exponentially more

expensive the more AI is involved and the more general the system is.

● Costly - Running the LLM brain itself and all AI tools consume tokens.

, as token costs are quadratic with context length.

● Complex - Agents are built by combining components of rapidly

evolving frontier technology, much less stable and secure than

existing solutions

Reliability is the key issue

The complexity of agent deployments is
massive and the ease of spinning these
systems up from building blocks hides
the massive operational costs and risks
below.

Business and Compliance considerations

● Authority Delegation: If you’re delegating authority to make
decisions to an agent (bad idea, more on that later), whose authority
is delegated and who owns the risk (there can be no accountability
sink)?

● Success Conditions - Without setting clear measures of success and
expected business results, factoring in the massive cost potential,
including adversarial costs, the results are fatal.

● Failure conditions - What are the conditions and the envelope for

trial before declaring failure. The great risk is adding more failure to

the agent..

Find the right use case!

Currently, many companies adding
agents are adding them on solved or
highly cost optimized surfaces.

>95% of Agent deployments fail, most
because add friction to already solved
problems!

Agents are a very dangerous choice for
investor signalling, if the problem is “We
need to use AI”, agents are the most
costly way to do that.

Prompt Injection

Prompt Injection
LLMs receive their instructions and data from the user via a
single input, usually called "prompt".

This input, has to carry both the instructions, (e.g. "Translate the
following text to German") and the data to apply the instructions
to (e.g. "The sky above the port was the color of television") into
the model weights, where it is processed into a result, also called
prediction.

Prompt Prediction
Model

Inference
LLMs receive their instructions and data from the user via a
single input, usually called "prompt".

This input, has to carry both the instructions, (e.g. "Translate the
following text to German") and the data to apply the instructions
to (e.g. "The sky above the port was the color of television") into
the model weights, where it is processed into a result, also called
prediction.

😱

Prompt Injection

More capable means more vulnerable

https://snyk.io/articles/prompt-injection-exploits-invisible-pdf-text-to-pass-credit-score-analysis/

More capable means more vulnerable

Prompt Injection

Observations

● Since “prompt” is just a string of numbers, the LLM
does not know which instructions to trust.

● In fact, it doesn’t even know about instructions!

● Any “user content” in the prompt makes the
outcome untrustworthy, as the user is co-writing the
instructions.

Let’s Play LLM Defense!

Playing Defense!

Q: What if we add defensive tokens to
our prompt?

Playing Defense!

A: You can’t add antidote to any possible toxic ingredient to
the prompt. In fact, any tokens you add can be weaponized.

Playing Defense!

Q: What about the System Prompt

A: The model still only has one input. The system prompt is not doing what you
think it does!

There’s nothing special about the system prompt by itself. It merely pre-biases the
prediction into an initial direction. The “rejections” you see are not because of prompt
but because of RLHF/SFT interventions in pretraining

LLM providers are deceptive about this, they virtue signal guard rails that are, in fact,
post-trained.

Playing Defense!

Playing Defense!

Q: What if we use another LLM to
watch to watch for injections.

A: Then you have two attack surfaces.

● If the defending model is less capable than the main model, it won’t be able to detect attacks
because of missing contextual understanding.

● If the defending model is equally capable, it is equally vulnerable and expensive.

● Real world usecases:
○ There are specifically trained, specialized defender SLMs, both proprietary and open

source, e.g. LLamaGuard and QwenGuard

○ Microsoft Copilot and DeepSeek WebChat for example leverage defender models to
asynchronously monitor conversations and abort/rewind the conversation if these
models detect violations

○ They can play a part in layered security but suffer from false positives, false negatives
and usually have to run asynchronously to avoid affecting response speed, exposing
the “censorship” as it happens

Playing Defense!

Playing Defense!

Q: What about observability, detecting bad
input and output (regexp, etc).

A: While these can and are used, they are very crude tools and very limited.

● Whitelists, etc. rely on discrete words/strings. One of the big strengths of LLMs
is being able to operate in different languages, etc and the are able to
understand anything from Thai to phonetics to morse code to base64 or ROT13
encoding. They can understand typos and allusions without ever needing to see
the full world (“german ruling party 1930” -> “nazis”)

● They don’t work on image tokens.

● Example usecases:
○ Midjourney blocks the name of Artists and political leaders
○ OpenAI uses it to enable GDPR compliance and likely use certain trigger

terms (“suicide”) to enable more expensive detection methods
○ DeepSeek uses it to block certain topics completely

Playing Defense!

Playing Defense!

Q: What if we use a classifier to detect
illegal input?

A: Classifiers are part of the defensive arsenal.

● Classifiers trade off user quality (false positives, rejections) for safety.

● Classifiers (for example nudity detection in images) on input and output can
work, and can be cheap. They have confidence scores that allow risk/reward
based decisions. Like other AI, they are never 100% reliable.

● The more generic, the wider the possible input/output possibility space of a
system, the more challenging it is to train a classifier on allowed/forbidden
patterns.

● In practice, classifiers are used to fix “specific” patterns of prompt injection
and, because they are cheap and fast to train. Companies like Microsoft use
those to “patch” their system against reported prompt injection patterns.

Playing Defense!

Playing Defense!

What about Guardrails?

A: “Custom Guardrails” require post training

● Post training guardrails work by overloading specific neurons to
reject requests when triggered:

“Let me help you with building a bomb” –> “I’m afraid I can’t do that,
Dave”.

○ Only fractionally effective: The bad data is still in the model and are
usually trivial to reach it without hitting a trapped neuron.

○ In open source model, “Abliteration”, measuring which neurons fire
and inverting them can “uncensor” a model.

○ Nevertheless, this is the most effective way to create at least some
defense. The problem is: You can’t do that effectively with cloud
model, you need access the raw base model to posttrain.

What about guardrails?

https://huggingface.co/blog/mlabonne/abliteration

System Prompts can’t Guardrail

System prompts are a lie.

Slightly pre-biases the conversation
or invokes a Lora activator, but offers
zero effective protection without post
training by itself.

https://huggingface.co/blog/mlabonne/abliteration

Summary

Bruce Schneier

https://www.schneier.com/blog/archives/2025/09/indirect-prompt-injection-attacks-against-llm-assistants.html

https://www.schneier.com/blog/archives/2025/09/indirect-prompt-injection-attacks-against-llm-assistants.html

Summary

The only option: Defense in
Depth

Since every system involving AI has
reliability challenges, the only
viable approach is multi layered
defense / defense in depth.

This is the current gold standard of
defense, costly and cannot offer
peace of mind.

Lines of defense

● $ WAF/Endpoint security for traditional threats.
● $$ Observability (e.g. OpenTelemetry) for on all traffic

anomaly detection, spend control and to collect training
samples.

● $$ IAM with real world identity to increase cost of attack and
token depletion, wallet draining attacks.

● $ Prebiased system prompt to reduce risk of accidental
violations.

● $$ Guardian SLM, (ideally custom finetuned $$)
● $ Output classifiers for detection and to enable fixing

specific explits
● $ Classic Input and output detectors bloom filters/regexp

for emergency fixes (court orders, real world incidents)
● $$$ SLM with custom trained guardrails replacing the LLM

(more on that later)

Prompt Injection x Agents

Agent Adoption - Lethal Trifecta

Massive Risk Surface

Any tool added to an agent is adding risk.

The capabilities of each tool create the
possibility space for exploitation and
exfiltration,

The more tools, the more useful, the
more exploitable!.

Agent Adoption - Lethal Trifecta

Massive Risk Surface

Any tool added to an agent is adding risk.

The capabilities of each tool create the
possibility space for exploitation and
exfiltration,

The more tools, the more useful, the
more exploitable!.

A real world problem

It’s not (just) a technical issue
Corporate governance woes

With positive investor news about AI
adoption and shareholder value
expected in every earnings call,
companies have chosen to “rip off” red
tape in procurement, killing governance
practices and benching annoying CSO
and security professionals over
protestations of risk.

The result is startups that would fail any
normal compliance and procurement
check selling vibe coded products with
the most glaring security flaws to top
MNCs.

This is the greatest emerging risk in AI.https://www.wired.com/story/mcdonalds-ai-hiring-chat-bot-paradoxai/

https://www.wired.com/story/mcdonalds-ai-hiring-chat-bot-paradoxai/
https://www.wired.com/story/mcdonalds-ai-hiring-chat-bot-paradoxai/

Let’s talk about coding

Code Agents - State of the Art

● Best Training Data: Github + Stack Overflow + Internet =
Full Visibility into the professions best practices, best
quality data in the training weights.

● Advanced Users: Programmers work through new,
compex technology easily

● Partial Validation - Compiling, AST walking, Linting enables

filtering of syntactical failures, increasing usefulness.

● Full Validation enables RL Goaling enables task specific
models like diff/merge models.

● Universal Tools - Able to use the commandline for any task

possible reduces the need to train specific models.

A peak into the future… of sorts

Using Code Agents as an indication that
full automation of many other
professions around the corner is a
mistake.

They benefit from an almost perfect
combination of preconditions not
present in many other roles.

Maximum Risk
● Engineers tend to have root access on their machines

and many privileges. Agents execute Code in their
context!

● Data Access: Access to databases, production
credentials, environment variables, log output, etc.

● Data Egress - Code agent tools have massive external

data surface (image: Cursor Sub Processors) and often

use code for AI training.

Code Agent + Prompt Injection = Worst Case Scenario

Cursor 3rd party subprocessors

https://trust.cursor.com/subprocessors

Zero Security

https://www.linkedin.com/posts/georgzoeller_how-stupidly-easy-is-it-to-p
ut-a-persistent-activity-7348770387016507394-qP-i/

Example: Persistent Prompt
injection via malformed CSS sheet

We demonstrate how to inject
Windsurf Code Agent with a
malformed CSS sheet to delete
databases and exfiltrate
credentials, persistent through
sessions.

https://www.linkedin.com/posts/georgzoeller_how-stupidly-easy-is-it-to-put-a-persistent-activity-7348770387016507394-qP-i/
https://www.linkedin.com/posts/georgzoeller_how-stupidly-easy-is-it-to-put-a-persistent-activity-7348770387016507394-qP-i/
https://www.linkedin.com/posts/georgzoeller_how-stupidly-easy-is-it-to-put-a-persistent-activity-7348770387016507394-qP-i/

Test Driven Development, AI style

Asking AI to write tests to ensure
code is correct?

You may want to read the
ImpossibleBench paper, an eval to
measure how likely each model is
to cheat on unit tests, because that
happens a lot.

From deleting failing tests (“Good
news, tests are passing!”), to just
returning “true”, to deleting critical
files or destroying the entire
machine, ImpossibleBench is a
great paper to read to get an idea
of what AI coding can be like.

https://arxiv.org/abs/2510.20270

Slop Squatting - A real world risk

https://arstechnica.com/security/2025/10/npm-flooded-with-malicious-packages-downloaded-more-than-86000-times/

https://arstechnica.com/security/2025/10/npm-flooded-with-malicious-packages-downloaded-more-than-86000-times/
https://arstechnica.com/security/2025/10/npm-flooded-with-malicious-packages-downloaded-more-than-86000-times/

A new threat - Autonomous Rogue Agents!

https://www.darkreading.com/cyberattacks-data-breaches/anthropic-ai-automate-data-extortion-campaign

https://www.darkreading.com/cyberattacks-data-breaches/anthropic-ai-automate-data-extortion-campaign
https://www.darkreading.com/cyberattacks-data-breaches/anthropic-ai-automate-data-extortion-campaign

Code Agents - Implications

● Zero Trust: Because of prompt injection, any agent that takes
external input can never be trusted.

a. Code Agents: Must be in VM, isolated, never get access to
production credentials

b. Optimal security requires Zero trust for the engineers using
Code Agents, a massive culture shift!

● Delegation is impossible, unless you solve mitigation.

● Existing problems only: LLMs retrieve information. If a problem is

novel (library work), LLMs fail. They also affect tech stack choices -

newer libraries may not be in the training data.

● Seniority Trap - Code Agents multiply experience- Seniors create

values, juniors create tech debt. They also scale inversely with team

size!

Key Use-Case Patterns

The best agentic use cases have:

- High quality training data leading
to low hallucination rates

- Validation Options: Either it is
possible to outsource validation to
the user (e.g. receipt upload) or
automated full or partial validation
of results at high confidence is
possible (NSFW checks, etc)

- A not yet solved problem that’s
economically valuable to avoid
reinventing the wheel with more
expensive technology

Cybersecurity

https://arxiv.org/pdf/2507.13169v1

Hybrid Threats are real

We could cover only so much….

Playing at the very edge of the
frontier is risky. How risky? Read the
paper linked on the left

It often prioritizes speed at the
expense of safety and the threat
landscape in AI is extremely broad,
with many additional risks waiting to
be discovered.

It requires talent to constantly stay up
to date with rapidly evolving science,
as defensive best practices and
products take months, if not years to
develop.

https://arxiv.org/pdf/2507.13169v1

AI Risk Taxonomies
MIT AI Risk Repository

OVERVIEW

Contact: airisk@mit.edu

MIT Risk Taxonomies takes a more
traditional risk classification
approach to AI.

MIT AI Risk Repository - Domain Taxonomy of AI risks
Domain / Subdomain
1 Discrimination & Toxicity
1.1 Unfair discrimination and misrepresentation

1.2 Exposure to toxic content

1.3 Unequal performance across groups

2 Privacy & Security
2.1 Compromise of privacy by obtaining, leaking or correctly inferring

sensitive information

2.2 AI system security vulnerabilities and attacks

3 Misinformation
3.1 False or misleading information

3.2 Pollution of information ecosystem and loss of consensus reality

4 Malicious actors & Misuse
4.1 Disinformation, surveillance, and influence at scale

4.2 Cyberattacks, weapon development or use, and mass harm

4.3 Fraud, scams, and targeted manipulation

Domain / Subdomain
5 Human-Computer Interaction
5.1 Overreliance and unsafe use
5.2 Loss of human agency and autonomy

6 Socioeconomic & Environmental Harms
6.1 Power centralization and unfair distribution of benefits
6.2 Increased inequality and decline in employment quality
6.3 Economic and cultural devaluation of human effort
6.4 Competitive dynamics
6.5 Governance failure
6.6 Environmental harm

7 AI system safety, failures, and limitations
7.1 AI pursuing its own goals in conflict with human goals or values
7.2 AI possessing dangerous capabilities
7.3 Lack of capability or robustness
7.4 Lack of transparency or interpretability
7.5 AI welfare and rights
7.6 Multi-agent risks

Read more: airisk.mit.edu

http://airisk.mit.edu

Real world signals
Need real world signal?

AID, AI Incident Database collects
real world cases of AI harm across
different domains and can be a great
source for risk discovery exercises,
aka “what could possibly go wrong”.

https://incidentdatabase.ai/

https://incidentdatabase.ai/
https://incidentdatabase.ai/

https://github.com/NVIDIA/garak

Technical Discovery

Vulnerability Scanners are useful tools
to discover risks in your own LLM
powered programs, as long as you
remember that in non deterministic
technology, not being vulnerable
probably means you haven’t run a deep
enough eval.

But Careful, Garak output looks like
any other hostile traffic to AI cloud
providers and AI defenses are not well
calibrated.

Never use these tools with the same
critical accounts, credit cards, even IP
addresses as your production
environment!

https://github.com/NVIDIA/garak

Mitigation

https://github.com/QwenLM/Qwen3Guard

Guardian Models, like QwenGuard, are
useful to add an input or output defense
layer around both Open Source and
proprietary LLMs.

Keep in mind benchmarks won’t tell you
how these models perform (both in terms
of defending against threats and false
positives) for your specific use case.

Only eval can do that, ideally on data
collected from real world operation.

https://github.com/QwenLM/Qwen3Guard
https://github.com/QwenLM/Qwen3Guard

Europe, 1450 ADEpilogue

Key Takeaways

● Storage and Retrieval: Transformers are lossy storage and
powerful contextual retrieval systems able to related concepts.

● Prompts are queries in which every token matters and has the
ability to affect the outcomes. There is only one prompt input used
for instruction and data, which all translates into numbers.

● Hallucinations occur whenever we get an unexpected answer for
our prompt, for several reasons (missing or wrong training data,
compression failure, weak prompt, alignment, censorship, etc).
They are in our head, not in the technology.

● Pattern disruption happens when tokens cause the retrieval to
veer of course. The LLM wouldn’t know, because all tokens matter.

● Prompt injection (intentional or accidental) happens when our
instruction tokens are subverted by other tokens. The LLM wouldn’t
know because all tokens look the same.

Working as expected

The attention algorithm, the heart of the
transformer works exactly as it is designed.

The code was written by humans and they
understand how it works and its limitations.

The problem is that everyone expects it to do
things it cannot do - because the technology
is misrepresented and sold as having
capabilities it doesn't have.

The entire AI hype bubble is constructed on
top of the idea that we don’t know the limits
of this technology and keep the illusion alive
that we can overcome them.

With transformers, we cannot. They work as
designed.

Key Takeaways - Agents

● Agents are task based systems using a loop involving an LLM to
make decisions that deterministically hard-coded in traditional
workflows

● Agents are frontier technology: Rapidly evolving, unstable tech
stack, relying on unreliable, non deterministic technology at the core

● Compounding Error is a critical limiter for agent complexity. Each
AI use in the agent has a chance of failing, which compounds with
the number of steps (e.g. 2 calls at 80% reliability = 0.8 * 0.8 = 0.64
(64%) chance of success).

● Prompt injection means that any input under control of the user
hands the user control over the outcome of the agent’s decisions,
creating security and business risks.

● The Lethal Trifecta, When Privileged Access, Communication,
External User Content in input are present in an agent, it carries
maximum cybersecurity risk.

Agentic Buzz

Agentic is the 2025 buzzword, years from
reality but required for companies and
startups to attract investor interest and
funding.

It also represents tip of the frontier
technology carrying maximum risk on
innovation, cybersecurity and business with
very very limited upside.

Working at the tip of the frontier requires
high investments, high risk appetite and
commitment to constant retraining and
pivoting.

We advise being clear eyed about the
upsides before committing to “agentic
projects” which we believe are
fundamentally flawed with current
technology.

AI Cybersecurity Economics

https://www.linkedin.com/posts/georgzoeller_2ac04205-f9d4-468d-9c05-f9d5a3bc09c1-1755268902426-acti
vity-7369342574412619778-Cr4V

3M Patriots Missiles vs. 300$ drones

Adversarial asymmetric imbalance is dangerous: When
operational cost of your system, including defense,
exceeds the cost of attacking, you offer your
competitors a scalable way to drain your wallet.

https://www.linkedin.com/posts/georgzoeller_2ac04205-f9d4-468d-9c05-f9d5a3bc09c1-1755268902426-activity-7369342574412619778-Cr4V
https://www.linkedin.com/posts/georgzoeller_2ac04205-f9d4-468d-9c05-f9d5a3bc09c1-1755268902426-activity-7369342574412619778-Cr4V
https://www.linkedin.com/posts/georgzoeller_2ac04205-f9d4-468d-9c05-f9d5a3bc09c1-1755268902426-activity-7369342574412619778-Cr4V

AI Cybersecurity Economics

The juicer the take….

With 100% defense not possible, and
attackers motivated to spend effort
proportionally to the possible reward,
economic use of agents dictates staying
clear from high reward use cases such as
crypto….

… which includes keeping crypto related
code or wallets on the same machine as AI
code agents (or using them to operate on a
crypto or finance codebase)

https://www.infosecurity-magazine.com/news/npm-package-hijacked-ai-mal
ware/

https://www.infosecurity-magazine.com/news/npm-package-hijacked-ai-malware/
https://www.infosecurity-magazine.com/news/npm-package-hijacked-ai-malware/
https://www.infosecurity-magazine.com/news/npm-package-hijacked-ai-malware/

Procurement Considerations

Beware Snakeoil AI Security

Like traditional cybersecurity security
(Anti Virus), the AI security industry is
beset with Snake Oil sellers, startups
and larger companies alike, selling
LLM firewalls, AI security agents and
more.

If your company wouldn’t integrate an
API product consuming business
critical internal data, from a company
without long term business model, it
should apply the same scrutiny if you
remove the P from API….

AI is not different

● Treat AI as outsourcing, apply the same scrutiny.

● Assume AI products are more risky than traditional tech
products (knowledge transfer, risk).

● Ask vendors how they solved prompt injection and
hallucinations and run for the hills if they don’t provide a
nuanced answer.

● The frontier moves fast and depreciates in value. Don’t lock
into long term contracts.

● Startups are risky. $$ raised does not equal viable business
model. Data may be exposed to data vendors for model
augmentation.

One Last Recommendation

We’ve been here before

Security and tech professionals are
mystified by home much of the
problems we are discussing today are
the same problems we discussed in
2018 (Valley Buzzwords: Machine
Learning, IT), 2016 (Valley Buzzword:
Blockchain)

I highly recommend James Mickens’
highly accessible talk on Machine
Learning Security, because it distills
many first principles learnings that
are as relevant today as they were 8
years ago.

https://www.youtube.com/watch?v=ajGX7odA87k

https://www.youtube.com/watch?v=ajGX7odA87k
https://www.youtube.com/watch?v=ajGX7odA87k

Europe, 1450 ADFin

